On ( k ; d ) - Colorings and Fractional Nowhere
نویسندگان
چکیده
The concepts of (k; d)-coloring and the star chromatic number, studied by Vince, by Bondy and Hell, and by Zhu are shown to reeect the cographic instance of a wider concept, that of fractional nowhere-zero ows in regular matroids.
منابع مشابه
On (k, d)-colorings and fractional nowhere-zero flows
The concepts of (k, d)-coloring and the star chromatic number, studied by Vince, by Bondy and Hell, and by Zhu are shown to reflect the cographic instance of a wider concept, that of fractional nowhere-zero flows in regular matroids. c © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 155–161, 1998
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملExtending Fractional Precolorings
For every d ≥ 3 and k ∈ {2} ∪ [3,∞), we determine the smallest ε such that every fractional (k + ε)-precoloring of vertices at mutual distance at least d of a graph G with fractional chromatic number equal to k can be extended to a proper fractional (k + ε)-coloring of G. Our work complements the analogous results of Albertson for ordinary colorings and those of Albertson and West for circular ...
متن کاملNowhere-harmonic Colorings of Graphs
Abstract. Proper vertex colorings of a graph are related to its boundary map, also called its signed vertex-edge incidence matrix. The vertex Laplacian of a graph, a natural extension of the boundary map, leads us to introduce nowhere-harmonic colorings and analogues of the chromatic polynomial and Stanley’s theorem relating negative evaluations of the chromatic polynomial to acyclic orientatio...
متن کاملGroup Connectivity and Group Colorings of Graphs — A Survey
In 1950s, Tutte introduced the theory of nowhere-zero flows as a tool to investigate the coloring problem of maps, together with his most fascinating conjectures on nowhere-zero flows. These have been extended by Jaeger et al. in 1992 to group connectivity, the nonhomogeneous form of nowhere-zero flows. Let G be a 2-edge-connected undirected graph, A be an (additive) abelian group and A∗ = A − ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993